Lecture 21: Basic Applications of Fourier Analysis (BLR-Test, List-Decoding Hadamard Codes, Smoothening Functions)

BLR Linearity Testing

- "BLR" = Blum, Luby, Rubinfeld
- Problem: Given an oracle access to a function $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$, test whether it is (close to) a linear function

Algorithm (BLR Test):

- Pick random x and y
- Output: "Linear" if $f(x) \cdot f(y)=f(x+y)$; otherwise, output "Not Linear"
- We want to understand the relation between the following two quantities

$$
A=\max _{S \subseteq[n]}|\widehat{f}(S)| \quad B=|\underset{x, y}{\mathbb{E}}[f(x) f(y) f(x+y)]|
$$

- We want to show that: $A \approx 1$ if and only if $B \approx 1$
- Let us expand B :

$$
\begin{gathered}
=\frac{1}{N^{2}} \sum_{x, y}\left(\sum_{Q \subseteq[n]} \widehat{f}(Q) \chi_{Q}(x)\right) \times\left(\sum_{R \subseteq[n]} \widehat{f}(R) \chi_{R}(y)\right) \\
\times\left(\sum_{T \subseteq[n]} \widehat{f}(T) \chi_{T}(x+y)\right) \\
=\frac{1}{N^{2}} \sum_{x, y} \sum_{Q, R, T \subseteq[n]} \widehat{f}(Q) \widehat{f}(R) \widehat{f}(T) \chi_{Q}(x) \chi_{R}(y) \chi_{T}(x+y)
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{N^{2}} \sum_{x, y} \sum_{Q, R, T \subseteq[n]} \widehat{f}(Q) \widehat{f}(R) \widehat{f}(T) \chi_{Q+T}(x) \chi_{R+T}(y) \\
& =\frac{1}{N^{2}} \sum_{x, y} \sum_{Q=R=T \subseteq[n]} \widehat{f}(Q) \widehat{f}(R) \widehat{f}(T) \\
& =\frac{1}{N^{2}} \sum_{x, y} \sum_{Q \subseteq[n]} \widehat{f}(Q)^{3}=\sum_{Q \subseteq[n]} \widehat{f}(Q)^{3}
\end{aligned}
$$

- So, under the constraint that $\sum_{S \subseteq[n]} \widehat{f}(S)^{2}=1$, we want to show that $A \approx 1$ if and only if $B \approx 1$, where:

$$
A=\max _{S \subseteq[n]}|\widehat{f}(S)| \quad B=\left|\sum_{S \subseteq[n]} \widehat{f}(S)^{3}\right|
$$

Lemma

First Direction: $A \geqslant B$

- Let $B^{\prime}:=\sum_{S \subseteq[n]} \widehat{f}(S)^{3}$
- Let $B_{+}^{\prime}=\sum_{S \subseteq[n]: \widehat{f}(S) \geqslant 0} \widehat{f}(S)^{3}$ and $B_{-}^{\prime}=\sum_{S \subseteq[n]: \widehat{f}(S)<0} \widehat{f}(S)^{3}$
- Let $C_{+}=\sum_{S \subseteq[n]: \widehat{f}(S) \geqslant 0} \widehat{f}(S)^{2}$ and $C_{-}=\sum_{S \subseteq[n]: \widehat{f}(S)<0} \widehat{f}(S)^{2}$
- Let $A^{\prime}=\max _{S \subseteq[n]: \widehat{f}(S) \geqslant 0} \widehat{f}(S)$
- Note that:

$$
\begin{gathered}
B_{+}^{\prime}+B_{-}^{\prime}=B^{\prime} \\
\Longrightarrow \quad B_{+}^{\prime} \geqslant B^{\prime} \\
\Longrightarrow \quad A^{\prime} \cdot C_{+} \geqslant B_{+}^{\prime} \geqslant B^{\prime} \\
\Longrightarrow \quad A \geqslant A^{\prime} \geqslant B^{\prime} / C_{+} \geqslant B^{\prime}
\end{gathered}
$$

- Now perform the same analysis with $-\widehat{f}(S)$ instead if $\widehat{f}(S)$ and get $A \geqslant-B^{\prime}$ and, hence, the result follows

Lemma

Other Direction: If $A \geqslant(1-\varepsilon)$ implies $B \geqslant(1-4 \varepsilon)$, for $0 \leqslant \varepsilon \leqslant 1 / 4$

- Suppose $A^{\prime} \geqslant(1-\varepsilon)$, then $B_{+}^{\prime} \geqslant(1-\varepsilon)^{3}$
- Then $C_{-}=1-C_{+} \leqslant 1-(1-\varepsilon)^{2}=\varepsilon(2-\varepsilon)$
- Then $B_{-}^{\prime} \geqslant-[\varepsilon(2-\varepsilon)]^{3 / 2}$
- Now, we have $B^{\prime}=B_{+}^{\prime}+B_{-}^{\prime} \geqslant(1-\varepsilon)^{3}-[\varepsilon(2-\varepsilon)]^{3 / 2}$
- We can show that: $B^{\prime} \geqslant(1-4 \varepsilon)$
- If $\min _{S \subseteq[n]: \widehat{f}(S)<0} \widehat{f}(S) \leqslant-(1-\varepsilon)$, we perform the above analysis with $-\widehat{f}(S)$ instead of $f(S)$ and get $B^{\prime} \leqslant-(1-4 \varepsilon)$
- Hence we get the result

Finding S

- Suppose f is close to χ, then how do we recover S ?
- Closely related to the problem of "Decoding Hadamard code"

List Decoding of Hadamard Code

- Hadamard Code establishes the following mapping:

$$
S \rightarrow H(S):=\chi s
$$

- Note that $H(S)$ and $H(T)$, where $T \neq S$, differs in exactly $N / 2$ positions
- Hadamard code has distance $N / 2$
- Decoding takes as input a function $f:\{0,1\}^{n} \rightarrow\{-1,+1\}$ and outputs the nearest χ_{S}

Lemma

Let $\Delta\left(f, \chi_{s}\right)$ be the distance between f and χ_{s}. Then
$\widehat{f}(S)=1-2 \delta(f, \chi s)$, where $\delta(\cdot, \cdot)=\Delta(\cdot, \cdot) / N$.

- If $\delta\left(f, \chi_{S}\right)=\frac{1}{2}-\varepsilon$, then: $\widehat{f}(S)=2 \varepsilon$

Unique Decoding

Unique Decoding up to "Error rate $<1 / 4$ ":

- "Error rate $\frac{1}{2}-\varepsilon<1 / 4$ " is equivalent to " $\varepsilon>1 / 4$ "
- Then there exists S such that $\widehat{f}(S)=2 \varepsilon>1 / 2$
- There cannot exist $T \neq S$ such that $\widehat{f}(T)>1 / 2$. Reason: If possible there exists $T \neq S$ such that $\widehat{f}(T)=2 \varepsilon^{\prime}>1 / 2$.
Then, we have:

$$
\delta\left(f, \chi_{S}\right)+\delta\left(f, \chi_{T}\right)=1-\left(\varepsilon+\varepsilon^{\prime}\right)<1 / 2
$$

But we have:

$$
1 / 2=\delta\left(\chi_{S}, \chi_{T}\right) \leqslant \delta\left(f, \chi_{S}\right)+\delta\left(f, \chi_{T}\right)
$$

A Contradiction.

List Decoding

List Decoding up to "Error rate $<1 / 2$ ":

- Suppose "Error rate $\leqslant \frac{1}{2}-\varepsilon$ "
- Then $\widehat{f}(S) \geqslant 2 \varepsilon$
- Note that:

$$
1=\|f\|_{2}^{2}=\sum_{S \subseteq[n]} \widehat{f}(S)
$$

- There can be at most $1 / 4 \varepsilon^{2}$ subsets S with $\widehat{f}(S)^{2} \geqslant 4 \varepsilon^{2}$

Error Function

- Consider a distribution p over $\{0,1\}^{n}$ that sets each bit independently to 1 with probability ε, and sets it to 0 with probability $(1-\varepsilon)$
- Therefore $p(x)=(1-\varepsilon)^{n-\mathrm{wt}(x)} \cdot \varepsilon^{\mathrm{wt}(x)}$
- Let $\rho=(1-2 \varepsilon)$

$$
N \widehat{p}(S)=\rho^{|S|}
$$

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n}} p(x) \chi_{S}(x)= & \sum_{x \in\{0,1\}^{n}}(1-\varepsilon)^{n-w t(x)} \cdot \varepsilon^{\mathrm{wt}(x)} \cdot(-1)^{S \cdot x} \\
= & (1-\varepsilon)^{n} \sum_{x \in\{0,1\}^{n}}\left(\frac{\varepsilon}{1-\varepsilon}\right)^{w t(x)}(-1)^{S \cdot x} \\
= & (1-\varepsilon)^{n} \sum_{0 \leqslant w \leqslant n} \lambda^{w} \sum_{0 \leqslant i \leqslant w}\binom{|S|}{i}\binom{n-|S|}{w-i}(-1)^{i} \\
& \text { where } \lambda=\varepsilon /(1-\varepsilon) \\
= & (1-\varepsilon)^{n} \sum_{0 \leqslant w \leqslant n}\left[X^{w}\right](1-\lambda X)^{|S|}(1+\lambda X)^{(n-|S|)} \\
= & \left.(1-\varepsilon)^{n}\left[(1-\lambda X)^{|S|}(1+\lambda X)^{(n-|S|)}\right]\right|_{X=1} \\
= & (1-\varepsilon)^{n}(1+\lambda)^{n}\left(\frac{1-\lambda}{1+\lambda}\right)^{|S|}=(1-2 \varepsilon)^{|S|}
\end{aligned}
$$

Noisy Version of a Function

- $\widetilde{f}(x)$ is computed by sampling $r \sim p$ and then outputting $f(x+r)$
- Let T_{ρ} be a mapping that maps the function f to \widetilde{f}
- Note that:

$$
\widetilde{f}(x)=\sum_{r \in\{0,1\}^{n}} p(r) f(x+r)=(p * f)(x)
$$

- Think: T_{ρ} is a linear map

Lemma

$$
\widehat{\tilde{f}}(S)=\rho^{|S|} \widehat{f}(S)
$$

- Proof: $\widehat{\widetilde{f}}(S)=N \widehat{p}(S) \widehat{f}(S)=\rho^{|S|} \widehat{f}(S)$
- Intuition: T_{ρ} smoothes f by attenuating the higher Fourier coefficients in f more

