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BLR Linearity Testing

“BLR” = Blum, Luby, Rubinfeld
Problem: Given an oracle access to a function
f : {0, 1}n → {+1,−1}, test whether it is (close to) a linear
function

Algorithm (BLR Test):
Pick random x and y

Output: “Linear” if f (x) · f (y) = f (x + y); otherwise, output
“Not Linear”
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Proof

We want to understand the relation between the following two
quantities

A = max
S⊆[n]

∣∣∣f̂ (S)
∣∣∣ B =

∣∣∣∣ Ex ,y[f (x)f (y)f (x + y)]

∣∣∣∣
We want to show that: A ≈ 1 if and only if B ≈ 1
Let us expand B :

=
1
N2

∑
x ,y

∑
Q⊆[n]

f̂ (Q)χQ(x)

×
∑

R⊆[n]

f̂ (R)χR(y)


×

∑
T⊆[n]

f̂ (T )χT (x + y)


=

1
N2

∑
x ,y

∑
Q,R,T⊆[n]

f̂ (Q)f̂ (R)f̂ (T )χQ(x)χR(y)χT (x + y)
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Proof

=
1
N2

∑
x ,y

∑
Q,R,T⊆[n]

f̂ (Q)f̂ (R)f̂ (T )χQ+T (x)χR+T (y)

=
1
N2

∑
x ,y

∑
Q=R=T⊆[n]

f̂ (Q)f̂ (R)f̂ (T )

=
1
N2

∑
x ,y

∑
Q⊆[n]

f̂ (Q)3 =
∑
Q⊆[n]

f̂ (Q)3

So, under the constraint that
∑

S⊆[n] f̂ (S)2 = 1, we want to
show that A ≈ 1 if and only if B ≈ 1, where:

A = max
S⊆[n]

∣∣∣f̂ (S)
∣∣∣ B =

∣∣∣∣∣∣
∑
S⊆[n]

f̂ (S)3

∣∣∣∣∣∣
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Proof

Lemma
First Direction: A > B

Let B ′ :=
∑

S⊆[n] f̂ (S)3

Let B ′+ =
∑

S⊆[n]:f̂ (S)>0 f̂ (S)3 and B ′− =
∑

S⊆[n]:f̂ (S)<0 f̂ (S)3

Let C+ =
∑

S⊆[n]:f̂ (S)>0 f̂ (S)2 and C− =
∑

S⊆[n]:f̂ (S)<0 f̂ (S)2

Let A′ = max
S⊆[n]:f̂ (S)>0 f̂ (S)

Note that:

B ′+ + B ′− = B ′

=⇒ B ′+ > B ′

=⇒ A′ · C+ > B ′+ > B ′

=⇒ A > A′ > B ′/C+ > B ′

Now perform the same analysis with −f̂ (S) instead if f̂ (S)
and get A > −B ′ and, hence, the result follows
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Proof

Lemma
Other Direction: If A > (1− ε) implies B > (1− 4ε), for
0 6 ε 6 1/4

Suppose A′ > (1− ε), then B ′+ > (1− ε)3

Then C− = 1− C+ 6 1− (1− ε)2 = ε(2− ε)

Then B ′− > − [ε(2− ε)]3/2

Now, we have B ′ = B ′+ + B ′− > (1− ε)3 − [ε(2− ε)]3/2

We can show that: B ′ > (1− 4ε)

If min
S⊆[n]:f̂ (S)<0 f̂ (S) 6 −(1− ε), we perform the above

analysis with −f̂ (S) instead of f (S) and get B ′ 6 −(1− 4ε)

Hence we get the result
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Finding S

Suppose f is close to χS , then how do we recover S?
Closely related to the problem of “Decoding Hadamard code”
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List Decoding of Hadamard Code

Hadamard Code establishes the following mapping:
S → H(S) := χS

Note that H(S) and H(T ), where T 6= S , differs in exactly
N/2 positions
Hadamard code has distance N/2
Decoding takes as input a function f : {0, 1}n → {−1,+1}
and outputs the nearest χS

Lemma
Let ∆(f , χS) be the distance between f and χS . Then
f̂ (S) = 1− 2δ(f , χS), where δ(·, ·) = ∆(·, ·)/N.

If δ(f , χS) = 1
2 − ε, then: f̂ (S) = 2ε
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Unique Decoding

Unique Decoding up to “Error rate < 1/4”:
“Error rate 1

2 − ε < 1/4” is equivalent to “ε > 1/4”

Then there exists S such that f̂ (S) = 2ε > 1/2
There cannot exist T 6= S such that f̂ (T ) > 1/2. Reason: If
possible there exists T 6= S such that f̂ (T ) = 2ε′ > 1/2.
Then, we have:

δ(f , χS) + δ(f , χT ) = 1− (ε+ ε′) < 1/2

But we have:

1/2 = δ(χS , χT ) 6 δ(f , χS) + δ(f , χT )

A Contradiction.
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List Decoding

List Decoding up to “Error rate < 1/2”:
Suppose “Error rate 6 1

2 − ε”
Then f̂ (S) > 2ε
Note that:

1 = ‖f ‖22 =
∑
S⊆[n]

f̂ (S)

There can be at most 1/4ε2 subsets S with f̂ (S)2 > 4ε2
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Error Function

Consider a distribution p over {0, 1}n that sets each bit
independently to 1 with probability ε, and sets it to 0 with
probability (1− ε)

Therefore p(x) = (1− ε)n−wt(x) · εwt(x)

Let ρ = (1− 2ε)

Lemma

Np̂(S) = ρ|S |
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Proof of Lemma

∑
x∈{0,1}n

p(x)χS(x) =
∑

x∈{0,1}n
(1− ε)n−wt(x) · εwt(x) · (−1)S·x

= (1− ε)n
∑

x∈{0,1}n

(
ε

1− ε

)wt(x)

(−1)S ·x

= (1− ε)n
∑

06w6n

λw
∑

06i6w

(
|S |
i

)(
n − |S |
w − i

)
(−1)i

where λ = ε/(1− ε)

= (1− ε)n
∑

06w6n

[Xw ](1− λX )|S |(1 + λX )(n−|S |)

= (1− ε)n
[
(1− λX )|S|(1 + λX )(n−|S |)

]∣∣∣
X=1

= (1− ε)n(1 + λ)n
(
1− λ
1 + λ

)|S |
= (1− 2ε)|S|
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Noisy Version of a Function

f̃ (x) is computed by sampling r ∼ p and then outputting
f (x + r)

Let Tρ be a mapping that maps the function f to f̃

Note that:

f̃ (x) =
∑

r∈{0,1}n
p(r)f (x + r) = (p ∗ f )(x)

Think: Tρ is a linear map

Lemma ̂̃
f (S) = ρ|S|f̂ (S)

Proof: ̂̃f (S) = Np̂(S)f̂ (S) = ρ|S |f̂ (S)

Intuition: Tρ smoothes f by attenuating the higher Fourier
coefficients in f more
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